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Abstract
A globally convergent method is proposed that either returns all solutions to steady-state models of dis-

tillation columns or proves their infeasibility. Initial estimates are not required. The method requires

a specific but fairly general block-sparsity pattern; in return, the computational efforts grow linearly

with the number of stages in the column. The well-known stage-by-stage (and the sequential modu-

lar) approach also reduces the task of solving high-dimensional steady-state models to that of solving

a sequence of low-dimensional ones. Unfortunately, these low-dimensional systems are extremely sen-

sitive to the initial estimates, so that solving them can be notoriously difficult or even impossible. The

proposed algorithm overcomes these numerical difficulties by a new reparameterization technique. The

successful solution of a numerically challenging reactive distillation column with seven steady-states

shows the robustness of the method. No published software known to the authors could compute all

solutions to this difficult model without expert tuning.

1 Structure of the problems considered
The proposed method assumes that the Jacobian can be permuted to lower block Hessenberg form

with many square, structurally nonsingular superdiagonal blocks, see Figure 1. The goal is to solve the
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Figure 1: The desirable block sparsity pattern of the Jacobian, the lower block Hessenberg form, see
text at equations (1)–(4).

bound-constrained nonlinear system

F(x) = 0, x≤ x≤ x, (1)
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where F : Rn 7→Rn is a continuously differentiable vector-valued function; x and x denote the vector of

lower and upper bounds on the variables x, respectively. The variables are partitioned as

x =


x0
...

xN

 (2)

into subvectors xi ∈ Rdi (i = 0 . . .N), so that n = d0 + · · ·+dN . Similarly to the variables, F is parti-

tioned as

F(x) =


F1(x)

...

FN+1(x)

 (3)

into subfunctions Fi(x)∈Rdi (i= 1 . . .N+1); the trailing dimension must be dN+1 := d0 since the sys-

tem is square. The lower block Hessenberg structure says that only variables from subvectors x0, . . . ,xi

(i≤ N) can appear in Fi(x):

Fi(x) = Fi(x0, . . . ,xi) for i = 1, . . . ,N. (4)

Equations (2)–(4) describe the block sparsity pattern shown in Figure 1. The square blocks form the

so-called upper envelope. In practice, the lower triangle is sparse.

At first glance, Figure 1 may look like the Dulmage-Mendelsohn decomposition1,2 but this is not the

case. The Dulmage-Mendelsohn decomposition is inconclusive when applied to the steady-state model

of distillation columns as it returns the original system as a single large block.

The sparsity pattern shown in Figure 1 is equivalent to the bordered block triangular form (BBTF) as

can be seen by moving the columns corresponding to x0 to the last position. (Often, the lower triangular

part is very sparse and the sparsity pattern can even be permuted to the recursive border block diagonal

form (RBBD) as well.3) In the tearing approach,4 the column border corresponds to the “tear” variables

and the row border corresponds to the equations that are used to iterate on the tear variables. The tear

variables x0 play a special role, all variables are eliminated in terms of them. The proposed method

is fundamentally different from the tearing methods: The proposed method does not have any tear

variables, x0 does not play a special role and the lower block Hessenberg form suggests exactly this.

Hereafter we assume that the equations and variables (corresponding to the rows and columns of

the Jacobian) have been permuted in such a way that the Jacobian of the problem is in lower block
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Hessenberg form. Finding an optimal BBTF and hence an optimal block decomposition is a difficult

task in general but powerful heuristics are available, for example MC33 from the Harwell Subroutine

Library.5

2 The proposed algorithm
A sophisticated block elimination is performed along the upper envelope (square superdiagonal

blocks), working from the left to the right, and from the top to the bottom. The following notation will

be used throughout the next subsection: xk = x(i)k (si). Here x(i)k on the right hand side denotes a function:

The lower index k tells that the value of the function determines variable xk; the upper index i is the loop

counter of the block elimination algorithm. Similarly, in the equation si−1 = si−1(si), the si−1 on the left

hand side is the value of the function si−1 on the right hand side evaluated at si.

2.1 Formal statement
Input: A system of equations (1) in lower block Hessenberg form as shown in Figure 1;

lower and upper bounds (x and x, resp.) of the variables.

Output: All solutions to the input.

External dependency: An auxiliary algorithm to parameterize the solution set of an underdetermined

system of equations. Here, the input of the auxiliary algorithm is (6) and its output is the parameteriza-

tion (8) together with the transition map (9).

Initialization: For i = 0, apply linear parameterization,

x0 = x(0)0 (s0) = x0 +(x0− x0)s0, s0 ∈ [0,1]d0 . (5)

Forward sweep: For i = 1 . . .N

Apply the auxiliary algorithm to the ith block, a di× (d0 +di) underdetermined system

Fi(x
(i−1)
0 (si−1), . . . ,x

(i−1)
i−1 (si−1),xi) = 0, (6)

considering si−1 and xi as variables, (dimFi = di; dimsi−1 = d0, dimxi = di; d0 superficial degrees

of freedom). The auxiliary algorithm returns the variables si−1 and xi reparameterized in terms of

new parameters si, in a well-conditioned, explicit fashion:

si−1 = si−1(si), xi = x(i)i (si), si ∈ [0,1]d0 . (7)
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From (7): xk = x(i−1)
k (si−1) = x(i−1)

k (si−1(si)) (k = 0, . . . , i−1) and xi = x(i)i (si); or simply

xk = x(i)k (si) for k = 0, . . . , i, si ∈ [0,1]d0 . (8)

Save (8) together with the transition map

si−1 = si−1(si) (9)

for later use.

Solving the final system: For i = N +1, find all solutions s∗N of the d0×d0 system

FN+1(x
(N)
0 (sN), . . . ,x

(N)
N (sN)) = 0. (10)

Backward sweep: The solutions are obtained by simple substitutions:

x∗0 := x(N)
0 (s∗N), . . . , x∗N := x(N)

N (s∗N).

In practice, the sparsity of the Jacobian is exploited for efficiency reasons, and not all x(i)k (si)

are computed and saved in (8) (see the Exploiting the sparsity section). In this case, recover

recursively si−1 from (9) for i = N, . . . ,1, then xi−1 from (8).

2.2 Numerical stability
If the reparameterization steps (8) are skipped and and all the variables are parameterized in terms

of s0, we get the final system

FN+1(x0(s0), . . . , xN(xN−1(. . .x0(s0) . . .)) ) = 0 (11)

which is likely to be extremely ill-conditioned due to the deep nesting of reasonably-conditioned trans-

formations. This equation is compared to the final system (10) of the forward sweep in which the repa-

rameterization steps are not skipped. For example, if one compares the term xN(xN−1(. . .x0(s0) . . .))

of (11) to the corresponding term x(N)
N (sN) in (10), the difference becomes clear. The former is usually

extremely ill-conditioned whereas the latter is reasonably-conditioned by construction, as a result of the

reparameterization. The stage-by-stage method6 and the sequential modular approach4 proceed just in

this fashion and do not involve any reparameterization. The resulting major flaw of these methods is

well-known: they can be extremely sensitive to the initial estimates, up to a point where solving the

final system of equations is notoriously difficult or even impossible.
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Reparameterization is the key point to achieve numerical stability. The large ill-conditioned problem

is split into smaller, reasonably conditioned ones. The idea of the proposed method was abstracted

from the multiple shooting method7 for boundary value problems, which mitigates in a similar way the

conditioning problems of the unstable single shooting method. Implementing the reparameterization (8)

is the most challenging step of the algorithm, see the Implementation details section.

2.3 Exploiting the sparsity
So far a dense lower block Hessenberg form has been assumed: For a given i in (8), all parameter-

izations are computed and stored for k = 0, . . . , i. It is easy to show that we would compute and store

altogether N(N + 1)/2+N parameterizations in (8) during the forward sweep (i = 1, . . . ,N). That is,

the work is proportional to N2; formally, the work is Θ(N2). Luckily, the Jacobian of the distillation

columns is not only a lower block Hessenberg structure but also a (bordered) block band matrix and the

work can be made proportional to the number of stages. Formally, the work can be reduced to O(N).

In case of distillation columns, the following recursive formula is proposed to determine which

variables have to be reparameterized:

z1 = x0,

zi = the subvector of

(
zi−1

xi−1

)
consisting of all variables appearing in some Fj ( j ≥ i)

(i = 2 . . .N +1).

(12)

Basically, equation (12) ensures that we pass on every variable that will be needed in later blocks, even

if they do not appear in some of the intermediate blocks. Relations (12) tell which variables have to

be reparameterized in (8); apart from this, no other changes are necessary to exploit the sparsity, the

algorithm is executed as it is presented in the Formal statement subsection.

Example. The following system of equations is being solved:

F1(x0, x1 ) = 0

F2( x1, x2 ) = 0

F3( x1, x3) = 0

F4(x0, x3) = 0.

(13)

The block elimination is performed with block size one, that is, single variables are eliminated in the

following order: x1,x2,x3 (upper envelope). The corresponding zi are

z1 = x0, z2 =

(
x0

x1

)
, z3 =

(
x0

x1

)
, z4 =

(
x0

x3

)
. (14)
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Note that x0 appears in z2 and z3 even though the corresponding equations do not depend on x0: We

have to pass on x0 because it is needed later, when solving F4(x0,x3) = 0. —

For distillation columns formula (12) does not result in any unnecessary reparameterizations, hence

it is optimal. However, if, for example, the last equation involves all variables, (12) does not reduce the

computational work, and some other formula would be needed.

2.4 Implementation details
The C++ implementation is available in the online supplementary material.8 Reparameterization

at (8) is the most challenging part of the implementation. The solution set of the underdetermined system

of equations (6) defines a manifold (“hyper-surface”) of dimension d0. Parameterizing multidimensional

manifolds can be done9 but is significantly more complex. However, the case d0 = 1 is easier to handle,

as a 1D manifold is just a union of curves and the arc length is the natural parameter. Therefore,

the current implementation works only for 1D manifolds, parameterized by arc length. A 1D manifold

consists of infinitely many points but it has to be approximated with finitely many parameters in practice.

That is, the manifold has to be discretized. A simple piecewise linear approximation to 1D manifolds is

implemented: An ordered set of points and linear interpolation between the neighboring points is used.

Our current research focuses on the general higher-dimensional case.

3 The computed reactive distillation column
The rigorous steady-state model is taken from Ciric and Miao,10 corresponding to the cost-optimal

column of Ciric and Gu.11 In the column, ethylene glycol is produced from ethylene oxide and water.

C2H4O+H2O→ C2H6O2 (ethylene glycol)

C2H4O+C2H6O2→ C4H10O3 (diethylene glycol)
(15)

Ethylene glycol is the product and diethylene glycol is an unwanted byproduct. The column can have

multiple steady-states (3 or even 9) depending on the the hold-up volume on the reactive stages. The

model equations and parameters, the elimination order, the permutation to lower block Hessenberg

form, the AMPL12 model of the example and the C++ implementation are all available in the online

supplementary material.8 This suffices to reproduce all computations. Due to the strict space limitations,

no further details are given here.

The column of Ciric and Miao10 lacks its distillate stream. Based on the conservation laws and the

necessary conditions of equilibrium, one can show that d0 equals the number R of independent reactions

for a column lacking its distillate stream. (The steady-state simulation of such a column only makes
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sense in the presence of reactions.) Since R = 2 in (15) but the current reparameterization step only

works for d0 = 1, as discussed in the Implementation details subsection, a simplifying assumption had

to be made. In the 7.3 Multiple Reactions subsection,10 it is shown that the high multiplicities remain

even if the side reaction is neglected and equimolar feed streams are specified. Therefore, the formation

of the diethylene glycol is ignored in our simplified model. However, we emphasize that the algorithm

is not limited to the d0 = 1 case, only the current implementation of the reparameterization step is.

4 Results and discussion
Block decomposition. The algorithm requires that its input system of equations has been permuted

in such a way that the Jacobian is in lower block Hessenberg form, see Figure 1. The permutation, de-

termining the elimination order, was obtained by inspection for the column referred to in The computed

reactive distillation column section. (As mentioned earlier, powerful methods are available to generate

good decompositions automatically, for example MC33.5) It is clear from Figure 2a that the Jacobian has

the desired lower block Hessenberg structure after permutation; the algorithm can be applied.
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Figure 2: (a) Sparsity pattern of the reactive distillation column of Ciric and Miao,10 high-resolution
image in the supplement. (b) 7 temperature profiles corresponding to the 7 steady state solutions of the
same column, λ is proportional to the hold-up volume on the reactive stages, see in the supplement.

Reactive distillation. The steady-state model of the reactive distillation column of Ciric and Miao10

is a real numerical challenge. IPOPT13 is well-known as a state-of-the-art solver for optimization.

An apparently little known feature of IPOPT is the restoration phase for solving systems of nonlinear

equations. The restoration phase is remarkably robust:14 IPOPT often converges even if tailored-made
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methods for distillation columns fail. Significant efforts were made to compute this column with IPOPT

and with various problem reformulations.15 These attempts failed; our study showed that the Jacobian

is singular to working precision. The failure is not the defect of IPOPT; the equation-oriented ap-

proaches15 cannot succeed under these circumstances. Indeed, a small change in the temperature or the

composition of the input streams of a stage can cause a 106 time larger change in the output streams of

the same stage. In other words, even the individual stages are not well-conditioned.

The proposed algorithm reduces the original n× n problem (1) to a much smaller d0× d0 problem

given by (10), and the final system (10) is reasonably conditioned by construction. Since d0 � n, the

savings in computational efforts are significant.

As discussed in the Implementation details subsection, the solution set of (6) is discretized as a

piecewise linear manifold. We measured the computational efforts in the number of pieces m of the

piecewise linear manifold. This is a good measure of work: Using m pieces (m+ 1 breakpoints) is

roughly the same work as m+1 function evaluations of F(x) in the original system (1). Additionally, m

does not depend on the software and hardware environment, thus it enables fair comparisons.

The steady-state model of the column of Ciric and Miao10 is a 70× 70 system (n = 70); the pro-

posed method reduces this system to a well-conditioned, univariate equation, corresponding to the final

system (10) with d0 = 1. Despite the unusually sensitive stage computations, m = 10 000 linear pieces

guarantee a sufficient piecewise linear approximation to perform the reparameterization at (6)–(8). The

proposed method is numerically stable, consistent results are computed under small perturbations. This

would not be the case if the method were numerically unstable. Temperature profiles, corresponding

to the 7 steady states, are given in Figure 2b. Our results are in good qualitative agreement with Ciric

and Miao10 but there are quantitative differences. Honest efforts have been made to resolve these.

Unfortunately the reason remains unknown, perhaps some of the model parameters contain a misprint.

Further numerical experiments (not detailed here) with other columns show that less than 50 break-

points (m < 50) are sufficient for columns with d0 = 1 even with highly nonideal mixtures as long as the

individual stages are well-conditioned. In other words, the computational costs of the method is typi-

cally less than 50 function evaluations of F(x) in (1) if the stages are not ill-conditioned (d0 = 1). The

reason why m = 10 000 linear pieces were required if the stage computations are unusually sensitive

is due to details of the current reparameterization algorithm. Different ways have been identified how

these extremely sensitive cases can be handled more efficiently but these ideas are not yet implemented.

Linear time complexity. All current general-purpose methods that are guaranteed to find all solutions
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have exponential worst case time complexity in the number of variables. Unfortunately, in practice,

the actual execution time (per solution) also tends to grow exponentially with the problems size as

well. The proposed method requires a specific but fairly general block sparsity pattern. In return, the

computational efforts (per solution) of the proposed method grow linearly with the number of stages in

case of distillation columns, that is, the time complexity of the method is linear in the number of stages.

The first step in proving linear time complexity is to show that the computational efforts to eliminate

one block can be safely bounded with a constant that does not grow with N. A stage in the distillation

column corresponds to a block in (6). The time needed to eliminate a block, that is, to solve the model

equations of a single stage can be safely bounded by a constant that is independent of the number of

stages. Solving the model equations of a stage is basically solving a bubble point calculation (coupled

with the reaction rate equations in case of a reactive stage) and this work can be safely bounded by a

constant that is independent of the number of stages. The number of parameterizations at (8) does not

grow with N either: The model equations of a stage only contain variables that are associated with its

immediate neighbors, and the number of these variables does not depend on the total number of stages.

It is clear from the Formal statement subsection that the time execution time is proportional to the

number of stages: Both the forward and the backward sweep takes N steps and the time to execute one

step is bounded by a constant independent of N. Thus, the proposed method has linear time complexity

in N (per solution) for distillation columns.

In the worst case, the computational work grows exponentially with d0 since the reparameterization

step involves discretization of a manifold of dimension d0. Based on the conservation laws and the

necessary conditions of equilibrium, one can show that for well-determined steady state models of

columns with two product streams (distillate and bottoms) and with arbitrarily many but fixed (known)

feed streams d0 = C− 1, where C is the number of components. The number of reactions, if any,

does not influence d0. The execution time is expected to remain acceptable even for multicomponent

mixtures with this type of columns, assuming that C is not too large (for example C ≤ 6).

General applicability of the method. The origin of the problem is irrelevant from the point of view of

the algorithm. The only relevant aspect is that the Jacobian can be permuted to lower block Hessenberg

form. It is irrelevant whether the problem is the steady state model of a reactive distillation column or

the model of an electric circuit, etc.; only the block sparsity pattern matters.
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