
A globally convergent method for finding all
steady-state solutions of distillation columns

(Supplementary material)

Ali Baharev, Arnold Neumaier

Contents

1 An illustrative linear example 2

1.1 The sequential approach . 2

1.2 Permutation to lower block Hessenberg form . 6

1.3 Solving the linear example with the proposed method 7

1.4 Sensitivity of the solution to the initial errors . 8

1.5 Comparison of the sequential and the proposed method 9

2 The nonlinear case: a reactive distillation column 10

2.1 Notes on the forward sweep . 10

2.2 Notes on solving the final system . 11

2.3 Implementation of the reparameterization step . 12

3 Comparison to the stage-by-stage or to the sequential modular approach 13

4 Appendix: ANSI C implementation of the illustrative linear example 15

1

This document gives additional explanation of the algorithm presented in [1]; it is therefore assumed

that the reader has already read that paper.

1 An illustrative linear example

The following system of linear equations is being solved.

x1 +10x21=11

10x1 +x2 + x21=12

x1+10x2 +x3 =12

x2+10x3 +x4 =12
...

x18+10x19+x20 =12

x19+10x20 =11

(1)

The sparsity pattern of the coefficient matrix is shown in Figure 1; the problem is in bordered lower

triangular form. The exact solution is xi = 1 (i = 0 . . .20). The condition number of the coefficient

matrix is approximately 1.49.

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

x7

x8

x8

x9

x9

x10

x10

x11

x11

x12

x12

x13

x13

x14

x14

x15

x15

x16

x16

x17

x17

x18

x18

x19

x19

x20

x20

x21

x21

Figure 1: The sparsity pattern of the coefficient matrix of problem (1). The leading submatrix, sur-
rounded by dashed lines, is singular to working precision.

1.1 The sequential approach

That family of methods that work in the same fashion as the as the stage-by-stage method [4] or the

sequential modular approach to process flowsheeting and optimization [2, Chapter 8] will be referred to

2

as the sequential approach. The goal of this section is to show why the sequential approach is prone to

fail.

For any linear problem in bordered lower triangular form (BLTF) the sequential approach is essentially

equivalent to Gaussian elimination without pivoting. In many cases, although the total system is well-

conditioned, the coefficient matrix of any leading m×m submatrix has a condition number that grows

exponentially with m and ultimately becomes singular to working precision. This causes the Gaussian

elimination, and hence the sequential approach, to fail.

A typical example is (1). We choose x21 as the “tear variable.” Given an initial estimate for x21, the

remaining variables can be determined recursively as follows.

x1 = −10x21+11

x2 = −x21−10x1+12

x3 = −x1−10x2+12

x4 = −x2−10x3+12
...

x20=−x18−10x19+12

(2)

The sequential approach would then check the residual

r := x19 +10x20−11 (3)

of the final equation and iterate, by changing the initial guess for x21 appropriately, until r becomes

smaller than a predefined threshold.

The above explicit formulas (2) are evaluated in floating-point arithmetic; the ANSI C code is in List-

ing 4. The initial estimate is x21 = 1+10−10, which is far closer to the exact solution than one
could hope for in any practical application. The following values are obtained.

Listing 1: Sequential approach with initial estimate x21 = 1+10−10

x1 = 0.9999999990

x2 = 1.0000000099

x3 = 0.9999999020

x4 = 1.0000009701

x5 = 0.9999903970

x6 = 1.0000950599

x7 = 0.9990590039

x8 = 1.0093149009

x9 = 0.9077919874

x10 = 1.9127652254

x11 = -8.0354442416

x12 = 90.441677191

x13 = -884.38132766

x14 = 8765.3715994

x15 = -86757.334667

x16 = 858819.97507

x17 = -8501430.4160

x18 = 84155496.185

x19 = -833053519.44

x20 = 8246379710.2

3

As it is can be seen in Listing 1, the error in xi grows exponentially with i; the x10–x20 values have

no correct significant digits. To explain this observation, we analyze how the eliminated variables xi

(i = 1 . . .20) depend on the initial guess x21. Since (6) is linear, all the eliminated variables can be

expressed as some appropriate linear function of x21,

xi = aix21 +bi (i = 1 . . .20). (4)

Equations (2) build up this dependence (4) between the eliminated variables and the initial guess by

recursion.

The actual value of the coefficients ai and bi are sought. For reasons that will soon become apparent,

we include the identity

x21 = a21x21 +b0 where a0 = 1, b0 = 0.

From the first equation 10x21 + x1 = 11 we have

x1 =−10x21 +11,

that is,

a1 =−10, b1 = 11.

From the equations

xi−1 +10xi + xi+1 = 12 (i = 1 . . .19)

with substitutions xi−1 = ai−1x21 +bi−1 and xi = aix21 +bi we get

(ai−1x21 +bi−1)+10(aix21 +bi)+ xi+1 = 12,

and by simple rearrangements

xi+1 = (−10ai−ai−1)x21 +(−10bi−bi−1 +12).

That is, for i = 1 . . .19 we have

ai+1 =−10ai−ai−1

bi+1 =−10bi−bi−1 +12.
(5)

with the initial values a0 = 1, a1 = −10, b0 = 0, b1 = 11. The values of ai and bi with 16 digit

precision are given in Listing 2, the ANSI C code of the program used for the computations are given

in Listing 4.

4

Listing 2: Coefficients ai and bi in xi = aix21 +bi with 16 digit precision, obtained by recursion (5).
a0 = 1

b0 = 0

a1 = -10

b1 = 11

a2 = 99

b2 = -98

a3 = -980

b3 = 981

a4 = 9701

b4 = -9700

a5 = -96030

b5 = 96031

a6 = 950599

b6 = -950598

a7 = -9409960

b7 = 9409961

a8 = 93149001

b8 = -93149000

a9 = -922080050

b9 = 922080051

a10 = 9127651499

b10 = -9127651498

a11 = -90354434940

b11 = 90354434941

a12 = 894416697901

b12 = -894416697900

a13 = -8853812544070

b13 = 8853812544071

a14 = 87643708742799

b14 = -87643708742798

a15 = -867583274883920

b15 = 867583274883921

a16 = 8588189040096401

b16 = -8588189040096400

a17 = -8.501430712608010e+16

b17 = 8.501430712608010e+16

a18 = 8.415548822207046e+17

b18 = -8.415548822207046e+17

a19 = -8.330534515080966e+18

b19 = 8.330534515080966e+18

a20 = 8.246379026858897e+19

b20 = -8.246379026858897e+19

The magnitude of |ai| is 10i. In the recursion (5), ai is multiplied by 10 in each step which explains

the exponential growth of |ai|. It is now clear that a small error in our initial estimate for x21 causes

a 10i time larger error in xi. This is the fundamental reason why the sequential approach fails:

5

The method can become (and in fact typically becomes – in the distillation applications) extremely
sensitive to the initial estimate, up to a point where solving the problem is notoriously difficult or
even impossible.

1.2 Permutation to lower block Hessenberg form

The proposed method requires that the problem is first put in lower block Hessenberg form. It is trivial

to permute the bordered lower triangular form shown in Figure 1 into lower block Hessenberg form:

The last column (border), corresponding to x21, is moved to the first position and x21 is relabeled to x0

(x21 ≡ x0). The system of equations (1) becomes

10x0 +x1 = 11

x0+ 10x1 +x2 = 12

x1+ 10x2 +x3 = 12
...

x18+10x19+x20= 12

x19+10x20 =11.

(6)

The sparsity pattern is shown in Figure 2. The coefficient matrix is tridiagonal, well-conditioned and

diagonally dominant, thus the problem is easily solvable by Gaussian elimination or with successive

substitution.
x0

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

x7

x8

x8

x9

x9

x10

x10

x11

x11

x12

x12

x13

x13

x14

x14

x15

x15

x16

x16

x17

x17

x18

x18

x19

x19

x20

x20

Figure 2: Sparsity pattern of the coefficient matrix.

6

1.3 Solving the linear example with the proposed method

The only purpose of this subsection is to demonstrate how the proposed method works as linear exam-

ples do not reveal the difficulties encountered only in the nonlinear case, see Section 2.

The presentation here strictly adheres to the steps of Section 3.1. Formal statement of BAHAREV &

NEUMAIER [1].

Input: The tridiagonal coefficient matrix of (6), which has the desirable sparsity pattern (lower block

Hessenberg form, block size is 1× 1), see Figure 2. Variable bounds are not considered to make the

presentation simpler.

External dependency: The general proposed method in [1] depends on an auxiliary algorithm to pa-

rameterize the solution set of an underdetermined system of equations. We chose the trivial parameter-

ization

xi = si (i = 1 . . .20). (7)

This is possible only because of the simplicity of the example. To keep the presentation simple, bounds

on the variables are not considered so that si are unbounded as well.

Initialization: The algorithm starts with the parameterization x0 = s0.

Forward sweep: For i = 1 . . .20

Both the system (6) and the parameterizations (7) are linear, hence the transition maps relating

si−1 and si are linear as well: si−1 = aisi +bi (i = 1 . . .20). In the forward sweep, the coefficients

ai and bi are computed and stored; the details are elaborated below.

If i = 1, from the first equation of (6) with the x0 = s0 substitution we get 10s0 + x1 = 11. Con-

sidering s0 and x1 as variables, the solution set of this linear equation can be parameterized with

a single parameter s1. The obvious parameterization gives:

x1 = s1

s0 = (11− s1)/10 =−0.1s1 +1.1.

That is, s0 = a1s1 +b1 where a1 =−0.1 and b1 = 1.1.

If i > 1, from the ith equation xi−2+10xi−1+xi = 12 with the xi−2 = si−2, si−2 = ai−1si−1+bi−1

and xi−1 = si−1 substitutions we get

(ai−1si−1 +bi−1)+10si−1 + xi = 12.

Given the parameterization xi = si, simple rearrangements yield

si−1 =
−si−bi−1 +12

ai−1 +10
.

7

That is, we have the following recursions

ai =
−1

ai−1 +10
and bi =

−bi−1 +12
ai−1 +10

with a1 =−0.1 and b1 = 1.1.

Solving the final system: The x19 = a20s20 + b20, x20 = s20 relations, obtained in the last iteration of

the forward sweep, are substituted into the last equation x19 +10x20 = 11 of (6), yielding

(a20s20 +b20)+10s20 = 11.

This equation has the analytic solution

s20 =
−b20 +11
a20 +10

. (8)

Backward sweep: For i = 20 . . .1

x20 = s20, the remaining components are recovered by passing through the transition maps recur-

sively

si−1 = aisi +bi, (9)

and recovering the solution at each block from the parameterization

xi−1 = si−1. (10)

The algorithm ends here.

This algorithm has been implemented in ANSI C, see Listing 4. When run, the program prints the

correct solution xi = 1 (i = 0 . . .20).

1.4 Sensitivity of the solution to the initial errors

The recursions (2) and (9), (10) are seemingly similar in the sense that given an initial value for one

variable they both determine the remaining variables. In case of (2), an initial guess for x0 is needed; in

case of (9), s20(= x20) is given by (8).

The fundamental issue with sequential approach was that any error in x0 grew exponentially with i.

To compare the proposed method to the sequential approach in this respect, the sensitivity of (xi =)si

(i = 0 . . .20) to s20 is analyzed here, similarly to (4). Due to linearity, si is a linear function of s20,

si = λis20 +µi. (11)

The goal is to determine the coefficients λi and µi. Substituting (11) to the transition maps si−1 = aisi+bi

8

gives

λi−1s20 +µi−1 = ai(λis20 +µi)+bi.

From this, with simple rearrangements, we conclude that

λi−1 = aiλi

µi−1 = aiµi +bi
(12)

for i = 20 . . .1; the initial values λ20 = 1 and µ20 = 0 are from the identity s20 = 1 · s20 + 0. The

coefficients λi and µi are computed in floating-point arithmetic, see Listing 3. The ANSI C source code

of the program is in Listing 4.

Listing 3: Coefficients λi and µi in si = λis20 +µi obtained by recursion (12).
lambda20 = 1.000000000000000e+00 mu20 = 0.0000000000000000

lambda19 = -1.010205144336438e-01 mu19 = 1.1010205144336438

lambda18 = 1.020514433643804e-02 mu18 = 0.9897948556635620

lambda17 = -1.030928930736557e-03 mu17 = 1.0010309289307366

lambda16 = 1.041449709275333e-04 mu16 = 0.9998958550290724

lambda15 = -1.052077853877629e-05 mu15 = 1.0000105207785388

lambda14 = 1.062814460229621e-06 mu14 = 0.9999989371855398

lambda13 = -1.073660635199117e-07 mu13 = 1.0000001073660636

lambda12 = 1.084617496949676e-08 mu12 = 0.9999999891538250

lambda11 = -1.095686175055874e-09 mu11 = 1.0000000010956862

lambda10 = 1.106867810619759e-10 mu10 = 0.9999999998893132

lambda9 = -1.118163556388491e-11 mu9 = 1.0000000000111817

lambda8 = 1.129574576873180e-12 mu8 = 0.9999999999988705

lambda7 = -1.141102048468942e-13 mu7 = 1.0000000000001141

lambda6 = 1.152747159576159e-14 mu6 = 0.9999999999999885

lambda5 = -1.164511110721751e-15 mu5 = 1.0000000000000011

lambda4 = 1.176395114559170e-16 mu4 = 0.9999999999999998

lambda3 = -1.188400383741868e-17 mu3 = 1.0000000000000000

lambda2 = 1.200526918269846e-18 mu2 = 1.0000000000000000

lambda1 = -1.212653452797825e-19 mu1 = 1.0000000000000000

lambda0 = 1.212653452797825e-20 mu0 = 1.0000000000000000

The λi are decreasing exponentially as i decreases. It means that any error in s20 also diminishes in an

exponential rate. Thus, the proposed method is numerically stable. This is the exact opposite of the

sequential approach: As it was shown in Listing 1, any error in the initial value of the recursion grew

exponentially as recursion (2) progressed, making the sequential method numerically unstable.

1.5 Comparison of the sequential and the proposed method

Given an initial estimate for x21(≡ x0), the sequential approach determines all remaining xi (i = 1 . . .20)

in one pass, see (2). Then, the initial estimate is updated based on the residual of the final equation (3)

and all the variables are recomputed. This procedure is repeated until convergence. In contrast, the

proposed method reaches convergence in just two passes: the forward and the backward sweep.

The sequential approach requires an initial estimate. Even a tiny error in the initial estimate grows

exponentially with each step of (2) and makes the sequential method numerically unstable.

The proposed method does not require any initial estimate; unlike the sequential approach, the first

9

variable x0(≡ x21) used to start the computations does not play any special role. The value to start the

backward sweep (9), s20(= x20) in this example, does not require guesses; it is a result of computations.

Any error (only rounding errors in case of this example) diminishes in an exponential rate with each

step of the backward sweep, that is, the proposed method is numerically stable.

2 The nonlinear case: a reactive distillation column

In the linear case, the reparameterization simplifies to permuting, scaling and shifting so it does not

reveal additional difficulties that arise only in the nonlinear case. These difficulties become visible when

computing the reactive distillation column in [1], producing glycol from ethylene oxide and water. For

this distillation column d0 = 1.

2.1 Notes on the forward sweep

The ith block represents a di× (d0 +di) underdetermined system of equations

Fi(x
(i−1)
0 (si−1), . . . ,x

(i−1)
i−1 (si−1),xi) = 0 (i = 1, . . . ,N), (13)

with d0 superficial degrees of freedom, considering si−1 and xi as variables (dimFi = di; dimsi−1 = d0,

dimxi = di). The solutions set of (13) is a d0-dimensional manifold (“hyper-surface”) in the (d0 +di)-

dimensional space of the variables.

0.0 0.2 0.4 0.6 0.8 1.0
xethylene oxide

0.0

0.2

0.4

0.6

0.8

1.0

x
w
a
te

r

Figure 3: The solution set of block 1 (stage 1), projected to the 2D plane; mole fractions in the liquid
phase entering stage 1 are on the axes.

We want to plot this manifold for the reactive distillation column in [1]. Since d0 = 1, the solution set

of (13) is just a curve for each Fi (i = 1, . . . ,N). This curve must be appropriately projected to the 2D

plane before it can be plotted since it is in a (d0 +di)-dimensional space, where d1 = 9 and di = 15

10

(i = 2, . . . ,N). Hence, the mole fraction of the ethylene oxide and water in the liquid stream entering

stage i (as determined by the solution set of block i) are selected for plotting. Figure 3 shows the results

of this projection for stage 1, which is the stage just above the reboiler.

System (13) becomes properly-determined if d0 of the variables are fixed; in other words, the solution

set can be parameterized by d0 parameters. The parameterizations x(i−1)
k (si−1) (k = 0, . . . , i− 1) ap-

pearing in (13) were obtained in the previous iteration step of the forward sweep (and the algorithm

was initialized with a trivial linear parameterization before entering the forward sweep). First, let us

assume that the solution set is parameterized by si−1 (dimsi−1 = d0), as obtained from the previous

iteration step. Figure 4a shows the points corresponding to si−1 = {0.0, 0.25, 0.50, 0.75, 1.00} (i = 1,

λ = 0.033). It is obvious from the figure that this parameterization is undesirable: the distribution of

these points are very uneven, the parameterization is sensitive to small changes in si−1 for small si−1

and insensitive for si−1 values close to 1. However, if the curve is reparameterized by (normalized) arc

length, we get a well-conditioned new parameterization by si. Figure 4b shows the points corresponding

to si = {0.0, 0.25, 0.50, 0.75, 1.00}. This is the desirable parameterization. Figure 4c shows how the

old and the new parameterizations are related.

0.0 0.2 0.4 0.6 0.8 1.0
xethylene oxide

0.0

0.2

0.4

0.6

0.8

1.0

x
w
a
te
r

(a)

0.0 0.2 0.4 0.6 0.8 1.0
xethylene oxide

0.0

0.2

0.4

0.6

0.8

1.0

x
w
a
te
r

(b)

0.0

0.2

0.4

0.6

0.8

1.0si

0.0 0.2 0.4 0.6 0.8 1.0
si−1

(c)

Figure 4: (a) The solution set of block 1, the points correspond to the parameter values si−1 =
{0.0, 0.25, 0.50, 0.75, 1.00}, where the x(si−1) parameterization was obtained in the previous iter-
ation step of the forward sweep. (b) After reparameterization, the points correspond to the parameter
values si = {0.0, 0.25, 0.50, 0.75, 1.00}. (c) The relation between the two parameterizations.

The forward sweep builds and saves the parameterizations xk = x(i)k (si) (k = 0, . . . , i) together with the

transition maps si−1 = si−1(si) in a recursive fashion.

2.2 Notes on solving the final system

After the forward sweep has finished, the properly-determined d0×d0 system

FN+1(x
(N)
0 (sN), . . . ,x

(N)
N (sN)) = 0 (14)

11

is obtained at block N + 1. All solutions of this system are sought. We have d0 = 1 for the reactive

distillation column computed in [1], that is, the residual FN+1(x
(N)
0 (sN), . . . ,x

(N)
N (sN)) in (14), can be

conveniently plotted as the function of sN . Figure 5 shows the numerical results. Finding all solutions

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

F
N
(x
)

0.00 0.25 0.50 0.75 1.00
sN

Figure 5: Solving the final equation, residual as the function of sN . Red dots are shown at the solutions.
The column has 3 steady-states at bifurcation parameter λ = 0.033.

is easy, only the sign changes have to be found. The absence of sign changes indicates infeasibility; the

original system of equations has no solution in this case.

2.3 Implementation of the reparameterization step

For those interested in the low-level details, the C++ implementation is available in the online supple-

mentary material of BAHAREV & NEUMAIER [1].

As stated earlier, d0 = 1 for the reactive distillation column under study. Hence, a 1D manifold is

reparameterized in each iteration step of the forward sweep. It is relatively easy to handle, as a 1D

manifold is just a union of curves and the arc length is the natural parameter. Therefore, the current
implementation works only for 1D manifolds, parameterized by arc length. However, it must be

emphasized here, that the algorithm by BAHAREV & NEUMAIER [1] is not limited to the 1D case,

only the current implementation is. Parameterizing multidimensional manifolds can be done [3] but is

significantly more complex (work in progress).

A 1D manifold consists of infinitely many points but it has to be approximated with finitely many param-

eters in practice. That is, the manifold has to be discretized. A simple piecewise linear approximation
to 1D manifolds is implemented: The 1D manifold is discretized as an ordered set of points and linear

interpolation is applied between the neighboring points.

12

In the initialization step, the trivial linear parameterization of x0

x0 = x(0)0 (s0) = x0 +(x0− x0)s0, s0 ∈ [0,1]d0 , (15)

is discretized as m+1 equidistant breakpoints at s0 = 0, 1
m , . . . ,1. The only parameter that the user must

specify is the number of pieces m of the initial piecewise linear manifold, defining the resolution of the

method.

In the reparameterization step, given the i the block

Fi(x
(i−1)
0 (si−1), . . . ,x

(i−1)
i−1 (si−1),xi) = 0 (i = 1, . . . ,N), (16)

the goal is to construct the numerically well-conditioned, explicit parameterizations

xk = x(i)k (si) for k = 0, . . . , i, si ∈ [0,1]d0 , (17)

together with the transition map

si−1 = si−1(si). (18)

This reparameterization is achieved by redistributing the breakpoints of the piecewise linear man-
ifold so that the breakpoints are situated approximately uniformly: infeasible and too close points

are removed and new points are inserted between too distant points. (Points that satisfy Fi(x) = 0 but vi-

olate the variable bounds x≤ x≤ x are infeasible.) This ensures that the piecewise linear approximation

of the solution set is sufficiently accurate at each block; compare with Figure 4.

3 Comparison to the stage-by-stage or to the sequential modular ap-
proach

The stage-by-stage method [4] and the sequential modular approach to process flow sheeting and opti-

mization [2, Chapter 8] will be referred to as traditional methods hereafter for short.

Basically all differences between the traditional methods and the proposed method are implied by one

fundamental difference: The traditional methods involve computations with real numbers only, whereas

the proposed method maintains an entire manifold representation at each block.

Since real numbers cannot be reparameterized, the traditional methods cannot involve any reparameter-

ization. Given an initial guess for x0, the estimates of all the remaining variables and the residuals of the

final system of equations are determined in one forward pass only. Then the initial estimate is updated

based on the residuals and all the variables are recomputed again in a forward pass. The forward pass is

repeated until convergence.

The proposed method is guaranteed to reach convergence in just two passes: one forward sweep fol-

lowed by one backward sweep. The traditional methods do not involve a backward sweep due to the

13

lack of reparameterization; they have to iterate on the tear variables instead. The convergence of the

traditional methods greatly depends on the initial guess.

The traditional methods require an initial estimate for x0 and can be extremely sensitive to it. This

sensitivity is their most problematic feature. The proposed method does not require any initial estimate

and is numerically stable thanks to the repeated reparameterizations.

This comparison is summarized in Table 1.

traditional proposed
operates on real numbers discretized manifolds
reparameterization no yes
backward sweep no yes
convergence not guaranteed guaranteed
initial guess needed none
sensitivity yes no

Table 1: Comparing the characteristic features of the traditional and the proposed method.

14

4 Appendix: ANSI C implementation of the illustrative linear example

Listing 4: Source code of the program used in the computations.
#include <math.h>

#include <stdio.h>

#define M 10.0

#define N_VARS 21

#define n (N_VARS -1)

void traditional_approach () {

double x[N_VARS];

double c[N_VARS];

double residual;

int i;

c[0] = c[n] = (M+1);

for (i=1; i<n; ++i) {

c[i] = (1+M+1);

}

// Setup finished

//---

x[0] = 1+1.0e-10;

x[1] = -M*x[0] + c[0];

for (i=2; i<=n;++i) {

x[i] = -x[i-2]-M*x[i-1]+c[i-1];

}

// Final equation x_{n-1} + M*xn = cn

residual = x[n-1] + M*x[n] - c[n];

//---

// Done , printing x and the residual

for (i=0; i<N_VARS; ++i) {

printf ("x%d = % .11g\n", i, x[i]);

}

printf (" residual = %.3e\n", residual);

}

void traditional_sensitivity () {

double x[N_VARS];

double a[N_VARS] = { 0 };

double b[N_VARS] = { 0 };

double c[N_VARS];

double residual;

int i;

c[0] = c[n] = (M+1);

for (i=1; i<n; ++i) {

c[i] = (1+M+1);

}

// Setup finished

//---

15

// x0 = a0*x0 + b0 with a0=1, b0=0

a[0] = 1;

b[0] = 0;

// M*x0 + x1 = c0

// x1 = a1*x0+b1 , where

a[1] = -M;

b[1] = c[0];

// x0 + M*x1 + x2 = c1

// (a0*x0+b0) + M(a1*x0+b1) + x2 = c1

// x2 = a2*x0 + b2 , where

for (i=1; i<n; ++i) {

a[i+1] = - M*a[i] - a[i-1];

b[i+1] = c[i] - M*b[i] - b[i-1];

}

x[0] = 1;

for (i=1; i<=n;++i) {

x[i] = a[i]*x[0]+b[i];

}

// Final equation x_{n-1} + M*xn = cn

residual = x[n-1] + M*x[n] - c[n];

//---

// Done , printing x and the coefficients

for (i=0; i<N_VARS; ++i) {

printf ("x%d = % .11g\n", i, x[i]);

}

printf ("\n");

for (i=0; i<N_VARS; ++i) {

printf ("a%d = % .16g\n", i, a[i]);

printf ("b%d = % .16g\n\n", i, b[i]);

}

printf (" residual = %.3e\n", residual);

}

void proposed_method () {

double x[N_VARS];

double a[N_VARS] = { 0 };

double b[N_VARS] = { 0 };

double s[N_VARS];

double c[N_VARS];

double lambda[N_VARS];

double mu[N_VARS];

int i;

c[0] = c[n] = (M+1);

for (i=1; i<n; ++i) {

c[i] = (1+M+1);

}

// Setup finished

//---

// x0 = s0

// x1 = s1

// M*s0 + s1 = c0

// s0 = a1*s1 + b1 where a1, b1

a[1] = -1/M;

b[1] = c[0]/M;

16

// x2 = s2

// (a1*s1+b1) + M*s1 + s2 = c1

// s1 = a2*s2 + b2 where a2, b2

// Forward sweep

for (i=2; i<N_VARS; ++i) {

a[i] = -1/(M+a[i-1]);

b[i] = (c[i-1]-b[i -1])/(M+a[i-1]);

}

// Final equation

// (an*sn+bn) + M*sn = cn, gives sn

s[n] = (c[n]-b[n])/(M+a[n]);

x[n] = s[n];

// Backward sweep

for (i=n; i>0; --i) {

s[i-1] = a[i]*s[i] + b[i];

x[i-1] = s[i-1];

}

//---

// Done , printing solution

for (i=0; i<N_VARS; ++i) {

printf ("x[%d] = %.14g\n", i, x[i]);

}

printf ("\n");

// Printing the coefficients of the transition maps

for (i=0; i<N_VARS; ++i) {

printf ("a%d = % .15g\n", i, a[i]);

printf ("b%d = % .15g\n\n", i, b[i]);

}

//---

// Sensitivity

lambda[n] = 1;

mu[n] = 0;

for (i=n; i>=1; --i) {

lambda[i-1] = a[i]* lambda[i];

mu[i-1] = a[i]*mu[i] + b[i];

}

for (i=n; i>=0; --i) {

printf (" lambda%d = % .15e\t\tmu%d = % .16f\n", i, lambda[i], i, mu[i]);

}

}

int main() {

printf("--\n");

printf (" Traditional approach\n");

traditional_approach ();

printf("--\n");

printf (" Sensitivity build up in the traditional approach\n");

traditional_sensitivity ();

printf("--\n");

printf (" Proposed method\n");

proposed_method ();

return 0;

}

17

References

[1] A. Baharev and A. Neumaier. A globally convergent method for finding all steady-state solutions
of distillation columns. submitted, 2013.

[2] L.T. Biegler, I.E. Grossmann, and A.W. Westerberg. Systematic Methods of Chemical Process
Design. Prentice Hall PTR, Upper Saddle River, NJ, 1997.

[3] M.E. Henderson. Higher-dimensional continuation. In B. Krauskopf, H.M. Osinga, and J. Galán-
Vioque, editors, Numerical Continuation Methods for Dynamical Systems, chapter 3, pp. 77–115.
Dordrecht, The Netherlands: Springer, 2007.

[4] W.K. Lewis and G.L. Matheson. Studies in distillation. Ind. Eng. Chem., 24:494–498, 1932.

18

	An illustrative linear example
	The sequential approach
	Permutation to lower block Hessenberg form
	Solving the linear example with the proposed method
	Sensitivity of the solution to the initial errors
	Comparison of the sequential and the proposed method

	The nonlinear case: a reactive distillation column
	Notes on the forward sweep
	Notes on solving the final system
	Implementation of the reparameterization step

	Comparison to the stage-by-stage or to the sequential modular approach
	Appendix: ANSI C implementation of the illustrative linear example

