

Sensor fusion for motion processing
and visualization

Ali Baharev, PhD

TÁMOP 4.2.2 “Szenzorhálózat alapú adatgyűjtés
és információfeldolgozás” workshop

April 1, 2011
Budapest, Hungary

What we have - Shimmer Wireless Sensor
Platform

Sensors
● 3-axis accelerometer, Freescale
 MMA7260Q ±1.5/2/4/6g (1g≈9.81m/s2)

● 3-axis gyroscope; two integrated
 dual-axis angular rate gyroscopes
 InvenSense 500 series

● No compass

Processing
● MSP430™16-bit Ultra-Low
 Power MCU @ 8 MHz
● 10Kbyte RAM, 48Kbyte ROM
● 8 Channels of 12bit A/D

Battery
● Integrated Li-ion
 280 mAh, 3.7 V

x

y

z

What we have - Shimmer Wireless Sensor
Platform (continued)

Radios
● 2.4 GHz IEEE 802.15.4
 Chipcon CC2420

● Mitsumi WML-C46N CSR based
 Class 2 Bluetooth Radio

Storage
● 2 GB Micro SD card

Form factor
● Small form factor
● 50mm x 25mm x 12.5mm
● Light weight: 15 grams

Software
● TinyOS event driven OS for WSN
● Open source

What we want - Gait analysis

● Analysis of measurable parameters of human gait
● From the output of the sensors –> reconstruct the orientation of
 the limbs in time

●The orientation, described by angles and position

Showing live demo

Qt cross-platform GUI,
C++ programming language

Open-source

For medical use (research)

Elbow flexion (left and right arm)

Results are presented as
animation (OpenGL)

What is the competitive edge of the Shimmer
platform?

Competitive if:

 Video cameras / ultrasound
measuring systems are not
applicable; for example
outdoor activities

 Multiple sensors are needed

 We cannot or we do not want
to process the data real-time

Kinect
Guiness record, 8m in 2months

Smart phones, Android devices

So how can we compute it?

?

From the output of the
sensors –> reconstruct the
orientation of the limbs in
time

x

y

z

What does the output of the sensors look like?

Raw accelerometer data

Raw gyroscope data

●The sensor was
placed on the desktop
then turned over

● Output is not zero
even in the static case

● Axes are not neces-
sarily perpendicular

● Needs calibration,
linear transfer func-
tion is assumed

● Accelerometer mea-
sures gravity even if
the mote is stationary

What does the output of the sensors look like?

Calibrated accelerometer data

Calibrated gyroscope data

●The sensor was
placed on the desktop
then turned over

● Output is not zero
even in the static case

● Axes are not neces-
sarily perpendicular

● Needs calibration,
linear transfer func-
tion is assumed

● Accelerometer mea-
sures gravity even if
the mote is stationary

What can we compute from acceleration?

In the static case constant 1g pointing downwards is measured

The angle between an axis of the device and the horizontal plane
can be computed – Tilt angles

We could even compute orientation if we had a compass

(accelerometers have no idea where north is)

x

y
z

g

Tilt angles computed from the acceleration data

Tilt angles computed from the measured acceleration (alpha) practically
coincides with the true tilt angles (beta) if the mote is not accelerating
We get weird spikes when the sensor is accelerating

Workaround: low-pass filter, works but poor transient response, lags

What can we compute from the gyro data?

Gyroscopes measures angular rate in the mote frame of reference

Angles can be computed by numerical
integration:

Good news: not influenced by acceleration
or gravity; fast, responsive, not subject to lag
Orientation s.t. initial orientation can be
computed

Drift
The integrated effects over time of a slowly
varying offset and noise. The drift must be
eliminated, requires an external reference vector that does not drift.

(simplified!) t =0∫
0

t

d

Putting it all together – drift cancellation

Both accelerometer and gyro data can be used to compute angles

Accelerometer provides a reference vector, gravity, that does not drift
(long-term) but has poor transient response

Gyro data is excellent for computing orientation (short-term), gives fast
transient response but needs reference vector that does not drift

?
keep the good

from both
somehow

Accelerometer
(long-term)

Gyro
(short-term)

Orientation

Our approach: offline, nonlinear regression for each record
Custom C++ solver using IPOPT

Future plans

Appropriate uses:

● Outdoor activities

● Multiple sensors

● Off-line processing

Plans:

● Rowing

● Running

Acknowledgements

Prof. László Hatvani: technical discussion

Péter Ruzicska: colleague

Miklós Maróti: supervising the research

The presented work was supported by the Grant TÁMOP-
4.2.2/08/1/2008-0008

References

W. Premerlani and P. Bizard; Direction Cosine Matrix IMU: Theory
http://gentlenav.googlecode.com/files/DCMDraft2.pdf

Shane Colton; The Balance Filter, A Simple Solution for Integrating
Accelerometer and Gyroscope Measurements for a Balancing
Platform; Chief Delphi white paper, 2007.
http://web.mit.edu/scolton/www/filter.pdf

http://gentlenav.googlecode.com/files/DCMDraft2.pdf
http://web.mit.edu/scolton/www/filter.pdf

Further slides, not presented

Live demo – fooling the application

After drift cancellation, only the
gyro data is used to compute
orientation

Position is not computed

We can fool the application
by rotating the sensor around
a point

It still gives us a proper elbow
flexion

Sensors: accelerometer

Accelerometer
● 3 Axis Accelerometer, Freescale MMA7260Q
● Sensitivity: 800 mV/g @ 1.5g
● 12 bit analogue digital converter –> integer number
● Resolution: 1.5g1.5g/212

≈7⋅10−4 g /unit

x

y

z 0-1g 1g

Sensitivity axis

Accelerometer measures gravity + acceleration

Comparing the measured acceleration (ax, ay, az) and the
gravitational acceleration (bx, by, bz) in the mote frame
Workaround: low-pass filter, works but poor transient response, lag

Static calibration of the accelerometer

Assumption: measured value is a linear function of the
 acceleration (linear transfer function)

Calibration: find the gain matrix (9 unknowns) and
offset vector (3 unknowns)

acceleration [m/s2] = gain∙(measured value) − offset

Place the mote on each of its six side and record the output
acceleration: (±1g, 0, 0); (0, ±1g, 0); (0, 0, ±1g)

Gives an overdetermined system of linear equations (18 equations
and 12 unknowns); linear least-squares, analytic solution (SVD)

Sensors: accelerometer and gyroscopes

Accelerometer
● 3 Axis Accelerometer, Freescale MMA7260Q
● Sensitivity: 800 mV/g @ 1.5g
● 12 bit analogue digital converter –> integer number
● Resolution:

Gyroscope
● 2 integrated dual-axis, InvenSense 500 series
● Full scale range: +/- 5000 deg/s
● Sensitivity: 2 mV/deg/s

Output in the static case
● Offset (not zero), actual value depends mainly on chip, plus
 temperature, etc.

● Accelerometer: constant value corresponding to 1g (gravity
 of Earth)

1.5g1.5g/212
≈7⋅10−4 g /unit

Sensors: gyroscopes

Gyroscope
● 2 integrated dual-axis, InvenSense 500 series
● Measures angular rate
● Full scale range: +/- 5000 deg/s
● Sensitivity: 2 mV/deg/s
● 12 bit ADC –> integer number

Output in the static case
● Offset (not zero), actual value depends mainly on chip, plus
 temperature, etc.

● Accelerometer: constant value corresponding to 1g (gravity
 of Earth)

Calibration of the gyroscopes

Calibration: find the gain matrix (9 unknowns) and
offset vector (3 unknowns; linear transfer function)

angular rate [rad/s] = gain∙(measured value) − offset

Place the mote on each of its six side and record the output
angular rate: (±45rpm, 0, 0); (0, ±45rpm, 0); (0, 0, ±45rpm)

A small error in the offset accumulates –> huge error in orientation
over time, drift

Can we compute speed or position from a(t)?

The a(t) vector is measured in the mote frame of reference
but we would like to track the mote in the earth frame.

Transformation is needed from one frame to the other –> rotation

v t =v 0∫
0

t

a −gd

r t =r 0∫
0

t

v d

x'

y'

z'

x

y

z

earth
frame

mote
frame

a

Rotation

We need rotation to transforms the acceleration vectors from the
mote frame of reference to the earth reference

Rotation: linear transformation, preserves lengths of vectors and
angles between vectors

x'

y'

z'

x

y

z

[
r xx' r yx ' r zx '

r xy' r yy ' r zy '

r xz ' r yz' r zz'
]

x y z
x '
y '
z '

Rotation matrix

Rotation (continued)

● Rotation matrix

● Euler angles

● Angle/axis

● Quaternion

Rotation is uniquely defined by 3 angles

Rotation representations

Performance comparisons of rotation methods

Storage requirements

Performance comparison of rotation chaining operations

Performance comparison of vector rotating operations

matrix 9

quaternions 4

angle/axis 3

multiplies add/substr. total

matrix 27 18 45

quaternions 16 12 28

multiplies add/substr. sin/cos total

matrix 9 6 0 15

quaternions 21 18 0 39

angle/axis 23 16 2 45

Infinitesimal rotations

Rotation in 3D is generally not commutative (neither is matrix
multiplication)

The order in which infinitesimal rotations are applied is irrelevant

Rotation matrix of infinitesimal rotations along the x, y, z axis:

Gives a recipe to update the rotation matrix from gyro signals

[
1 −dz dy

dz 1 −dx

−dy dx 1]

Updating the rotation matrix from gyro signals

W. Premerlani and P. Bizard; Direction Cosine Matrix IMU: Theory

Sources of errors
● Finite time step
● Quantization error: finite digital representation

The rotation matrix must be corrected –> renormalization at each
point (no divisions or square roots)

R tdt =R t [
1 −dz dy

dz 1 −dx

−dy dx 1]
dx=x dt
d y=y dt
dz=z dt

Drift cancellation off-line with nonlinear
regression

Off-line, operates on the whole data set but manipulates only
12 variables: 3x3 gain matrix and offset vector of the gyro

angular rate [rad/s] = gain∙(measured value) − offset

Assumption: ‘On average’ the measured acceleration points into the
same direction (gravitational acceleration).

A nonlinear programming problem is solved

 variables: gyro gain and offset

max∣∑
i=0

N

Riai∣
R 0 =I
R i=R i−1G i−1 for i=1N
G i : from gyro signals

Software

● NLP, a nonlinear programming problem to be solved

● IPOPT, general purpose NLP solver (line search filter method)
 remarkably robust

● C++ API is used, only the objective has to be implemented

● Automatic differentiation (AD): the gradient is not approximated
 with numerical differentiation but automagically computed with
 AD (our own C++ library)

● L-BFGS (approximates the inverse Hessian matrix) to further
 speed up the computations

On-line methods for sensor fusion

Perhaps the most popular one is the Kalman Filter

It is an on-line method that manipulates each sample

Good introduction with examples: SIGGRAPH Course Pack

Kalman filter is difficult to understand

Much simpler approach is the Complementary Filter with similar
results (see filter.pdf)

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf
http://web.mit.edu/first/segway/segspecs.zip

Computing position

Now, the measured values in the mote frame can be transformed
to the earth frame

Horrible error, computing the double integral is notoriously difficult

v t =v 0∫
0

t

a −gd

r t =r 0∫
0

t

v d x'

y'

z'

x

y

z

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

