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Abstract.

We survey decomposition methods that aim at reducing the computation time of solving a given
sparse nonlinear system of equations. After the decomposition, a sequence of small subproblems
determined from a suitable ordering of the variables and equations are solved. The ultimate objective
is to find that ordering that results in the most savings with respect to the overall solution time,
including the time to determine the ordering. Since this objective is solver and machine dependent,
and too complicated to handle rigorously, compromises have to be made. In the context of nonlinear
systems of equations, a popular objective is to maximize the number of variables eliminated by solving
univariate equations. This objective makes the problem fundamentally different from fill-reducing
orderings. Throughout this paper, the decomposition methods are treated in terms of sparse matrix
orderings: The numerical methods for solving the decomposed systems are not discussed.

Key words. design structure matrix, diakoptics, minimum degree ordering, sparse matrix
ordering, tearing

1. Introduction. One of the most popular decomposition methods for solving
nonlinear systems of equations is called tearing. Three equivalent formal definitions
of optimal tearing are given: Section 2 defines it in terms of sparse matrices, Section 3
defines it with the aid of sparse bipartite graphs, and Section 4 gives an integer linear
programming (ILP) formulation. Problems closely related to tearing are discussed in
Section 5. In particular, in Section 5.1 we relate tearing, as defined in the chemical
engineering literature, to the definitions given in Sections 2—4.

The goal of tearing is to reduce the computation time needed to solve a given
system of equations by exploiting its sparsity pattern. The exact running time depends
on many factors beside the input problem, and this objective would be too difficult
to handle rigorously. Therefore, in practice, simpler objective functions are used,
and it is assumed that minimizing the chosen objective function also minimizes the
running time (at least approximately). The choice of the objective function is a matter
of judgment and highly context dependent. In the context of nonlinear systems of
equations, a popular objective is to maximize the number of variables eliminated
by solving univariate equations. This objective is used in the present paper too.
However, this choice is a compromise, and the issues of this objective will be discussed
in Section 6.

It is extremely difficult to categorize variations and improvements of tearing, since
they often overlap and do not fit cleanly into a single category. Nevertheless, we try
to categorize them in Sections 7-10.

Certain variants of tearing are discussed in Section 7 that allow small solvable
subsystems other than univariate equations. As we will discuss in Section 7.1, a typical
implementation starts with the so-called block lower triangular decomposition, and
tearing is only applied to the obtained diagonal blocks. We give a simple example
showing that this approach can lead to suboptimal results. The gap between the cost
of the ordering obtained with such an implementation and the cost of the optimal
ordering can be proportional to the problem size. This is unacceptable for the kind
of applications we care about (for example distillation columns); Sections 7.2-7.4
describe variants of tearing that can produce appropriate orderings in such cases.

Section 8 presents ways to improve heuristic methods for tearing, while Section 9
gives examples for improving exact tearing algorithms. Section 10 briefly describes
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context dependent alternative objective functions. The paper ends with Section 11
listing various practical applications of tearing.

The sibling paper [9] of the present paper introduces two exact algorithms for
optimal tearing: (i) an algorithm based on integer programming, and (ii) a custom
branch and bound algorithm. It also proposes a simple algorithm for automatically
identifying numerically safe eliminations (that avoids division by zero for example).

2. Tearing of sparse matrices.

2.1. Tearing. Tearing (cf. [38, 39, 87]) is the representation of a sparse system
of nonlinear equations

(1) f(z) =0, where f: R" — R™,

in a permuted form where most of the variables can be computed sequentially once a
small auxiliary system has been solved. More specifically, given permutation matrices
P and @ such that after the transformation

g | _ Y| _
9i(y, z) = 0 can be rewritten in the equivalent explicit form

(3) Yi = Gi(Y1:i-1,2)

using appropriate symbolic transformations. Equation (3) implies that the sparsity
pattern of the Jacobian of Pf is

(4) J= [é g} , where A is lower triangular,

J is therefore bordered lower triangular. Hereafter, we will refer to a particular
choice of P,Q, g, h,y, and z satisfying equations (3) and (4) as an ordering. Given
an ordering, the system of equations f(z) = 0 can be written as

( 7Z) =0
(5) hy2) — 0.

The requirement (3) that g;(y,z) = 0 can be made explicit in y; essentially means
y = g(z). Substituting y into h yields h(g(z),z) =0 or

(6) H(z)=0.

That is, the original nonlinear system of equations f(x) = 0 is reduced to the (usually
much) smaller system H(z) = 0.

Notes. If (3) cannot be made explicit in y;, one can still attempt to solve for y;
numerically, see for example local_iteration_in tearing in [88]. This can help to
reduce the dimension of z, as the variable y; otherwise would have to be in z.

It is assumed throughout this paper that each equation involves at least one
variable. (For example, the equation 0 = 0, although true, is not considered a valid
input for the proposed algorithms.) It is also assumed that each variable appears in
at least one equation, that is, free variables are not allowed. A preprocessor can easily
remove such equations and variables from the input.
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2.2. Optimal tearing. Optimal tearing is the task of finding an ordering that
minimizes the border width

(7) d:=dimz

of J. This objective is a popular choice [16, Sec. 8.4] and often results in a significant
speed up, although it does not guarantee any savings in computation time in the
general case. We will discuss the issues related to this objective in Section 6.

When seeking the solutions of (1) with a numerical solver, instead of posing (1) to
the solver, we pose the smaller system (6). Once we have a solution z to (6), we recover
the solution z to the original system (1) using (2) and (3). There are exactly two
types of variables: (i) the eliminated variables y get their value through assignment
according to (3), and (ii) the guessed variables z, that are to be determined by the
solver. We call them guessed variables because in some sense the solver has to “guess”
the correct values of these variables such that (6) is satisfied. Also, solvers usually
require that the user provides an initial guess for the variables, for z in this case. By
minimizing d, we minimize the guesswork; only the guessed variables are counted in
the objective.

3. Tearing of sparse bipartite graphs. The adjacency matrix associated with
system (1) is represented as a bipartite graph B. One of the disconnected node sets is
denoted by R and corresponds to the equations (rows); the other node set is denoted by
C and corresponds to the variables (columns). If the variable z; appears in equation
fi(z) = 0, there is an edge between the respective two nodes of the bipartite graph;
the two nodes are not connected otherwise. We assume that every node has at least
one incident edge, otherwise the corresponding variable or equation can be ignored,
reducing the problem size. An example is shown in Figure 1.

R c

xr1 + IH(II + 2) + X9 = 7 f1

ZTo+a3=1 I3 ‘
(t—)

system of equations sparsity pattern of J bipartite graph B

Fia. 1. An example system of equations, the corresponding sparsity pattern of the Jacobian,
and bipartite graph B. Note that f1 cannot be made explicit in x1; the corresponding entry is gray
in the matriz, and the corresponding edge of the graph is dashed.

A subset of the edges of B is labeled, let F' denote this set. F' can be an arbitrary
subset of the edges, but the intention is to label those edges that, when brought
into explicit form as in (3), are unique in y; and numerically stable. The goal is to
maximize the number of variables eliminated through such assignments. Identifying
a suitable set F' is discussed in [9].

On a high level of abstraction, we can think of tearing as follows.
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1. We first orient the bipartite graph B associated with system (1): The edges of

the graph are directed in a special way, determined by a matching algorithm.
2. The resulting directed graph is made acyclic by reversing as few of its edges

as possible.
3. To find an optimal elimination order, the cardinality of the eliminated vari-
ables has to be maximized over all possible orientations of B .
This interpretation provides the basis of an integer programming-based approach, to
be presented in the next sections. However, the above view of tearing, performing the
individual steps sequentially, is only conceptual: Greedy heuristics exist that perform
the orientation, edge reversing, and ordering steps simultaneously, see for example [23,
24, 116]. When such a greedy heuristic is used, the simultaneous approach can be
fruitful: One can take into account the resulting cycles when orienting the bipartite
graph. On the other hand, exact methods must consider all the possible orientations.

3.1. Matching. We introduce some terminology before giving further details
of the individual steps mentioned above. Given an undirected graph G = (V| E), a
matching is a subset of edges M C FE such that for all nodes v € V, at most one
edge of M is incident on v. A node v € V is matched by the matching M if some
edge in M is incident on v; otherwise, v is unmatched. A perfect matching is a
matching in which every node is matched. A maximum matching is a matching of
maximum cardinality, that is, a matching M such that for any matching M’, we have
|M| > |M’|. If a bipartite graph is viewed as a sparse matrix, a maximum matching
corresponds to a permutation that places a maximum number of nonzero elements
on the diagonal of the matrix. In this context, maximum matching is also referred
to as maximum transversal or maximum assignment. In the earlier chemical
engineering literature, matching is also referred to as output set assignment: We
assign each eliminated variable (“output”) to the equation used for eliminating that
variable.

3.2. Orientation. Given an arbitrary bipartite matching M’, we first remove
those edges from M’ that are not in F'; the resulting subset M = M’ N F of edges is
still a matching. Then, the edges of the bipartite graph B are directed such that the
edges in M point towards the nodes in C, and all the other edges point towards the
nodes in R; see Figure 2.

B D
5 4
6 1
2 3

M M R C

Fi1G. 2. The steps of tearing: bipartite matching M’ — matching M after considering feasible
assignments — orientation — feedback edge set — a possible elimination order. Details are given
in the text.

3.3. Cycle structure. The way the bipartite graph B is oriented given the
matching M has implications on the cycle structure of the resulting directed graph
D. An unmatched node r € R must be a sink; an unmatched node ¢ € C must be a
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source. Neither sinks, nor sources can participate in any cycle, only matched nodes
can. The only matched edge of a matched node n must participate in all the cycles
that n is involved in; reversing the only matched edge of n therefore must destroy
all the cycles passing through n and cannot create new cycles. Reversing an edge
(u,v) € M of D has the same effect as removing (u,v) from M and re-orienting B;
M\ {(u,v)} is still a matching, u and v become a source and a sink accordingly.

In general, a simple cycle in a (directed or undirected and not necessarily bipar-
tite) graph is a cycle with no repeating edges and no repeating nodes in the cycle. Two
simple cycles are distinct if one is not a cyclic permutation of the other. Throughout
this paper, whenever simple cycles are mentioned, distinct simple cycles are meant.

Let us narrow our attention to the subgraph H induced by the edges participating
in a simple cycle of an undirected bipartite graph. There are exactly two orientations
of H such that a directed cycle is obtained; both of these orientations stem from
a perfect matching, or equivalently, a maximum cardinality matching in this case.
Exactly half of the edges of H are included in a maximum cardinality matching, see
Figure 3. (An undirected graph G is bipartite if and only if every cycle of G has even
length [131, Sec. 2.1].) Therefore, given a bipartite graph B and a matching M, the

F1c. 3. An undirected simple cycle and its two orientations that result in directed simple cycles.

orientation of B according to M will result in a directed acyclic graph if and only if
M does not involve a maximum cardinality matching on any subgraph induced by
the nodes of a simple cycle.

3.4. The feedback edge set problem. The subset of edges in M that have to
be reversed to make the resulting directed graph acyclic are called a feedback edge set.
In this subsection, we define the minimum feedback edge set problem in the general
case, where the input directed graph G is not necessarily bipartite.

A feedback edge set is a subset of edges containing at least one edge of every
cycle in a (not necessarily bipartite) directed graph G. Removing the edges in the
feedback edge set from G makes the remaining graph acyclic. The feedback edge set
is often referred to as feedback arc set in the literature, however, we prefer the term
feedback edge set.

Given a directed graph G and an integer parameter k, the parameterized feed-
back edge set problem is to either construct a feedback edge set of at most k edges
for G, or to prove that no such edge set exists. This problem is called the feedback arc
set problem (item 8) on the list of Richard M. Karp’s 21 NP-complete problems [68].

Finding a feedback edge set of minimum cardinality is the minimum feedback
arc set problem; we will refer to it as the minimum feedback edge set problem
hereafter. The complementary problem to the minimum feedback edge set problem is
the maximum acyclic subgraph problem. Unless P = NP, the minimum feed-
back edge set problem does not have a polynomial-time approximation scheme [67].
The minimum feedback edge set problem is approximation resistant: Conditioned
on the Unique Games Conjecture (UGC) [69], for every C' > 0, it is NP-hard to
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find a C-approximation to the minimum feedback edge set problem, see Corollary
1.2. in [54]. Both heuristics for finding a feedback edge set of small cardinality and
exact algorithms for finding a feedback edge set of minimum cardinality are discussed
in [10].

The eliminated variables correspond to those nodes of the final directed acyclic
graph that have an incoming edge; these edges were originally in the matching M as
well. The objective of tearing is to find an orientation (or equivalently a matching)
that maximizes the cardinality of the eliminated variables.

4. Tearing by integer linear programming. The following integer program-
ming formulation is used in our implementation; any feasible solution to this integer
program uniquely defines a bipartite matching M.

max Z Ye (find the maximum-cardinality matching)
v eeF
s.t. Z UrelYe < 1 for each r € R, (each row is matched at most once)
ecE
(8) .
Z VeelYe < 1 for each c € C, (each column is matched at most once)
ecE

A

£Ls
E AseYe < 5 —1 for each s € S (cycles are not allowed).
ecE

Here the binary variable y, is 1 if edge e is in the matching M, and 0 otherwise; the
set F' is an arbitrary subset of edges of B, see Sec. 3; E, R, and C' denote the index
sets of the edges, the rows, and the columns, respectively; u,. is 1 if node r is incident
to edge e, and 0 otherwise; similarly, v, is 1 if node c is incident to edge e, and 0
otherwise; S is the index set of those simple cycles currently in the (incomplete) cycle
matrix A = (as.); the entry ag. is 1 if the edge e participates in the simple cycle s,
and 0 otherwise; ¢4 is the length (the number of edges) of the simple cycle s. The
last inequality excludes maximum cardinality matchings on all subgraphs induced by
simple cycles, see Section 3.3.

The integer program (8) with the complete cycle matrix A can be fed to a general-
purpose integer programming solver such as Gurobi [53] or SCIP [2] if enumerating
all simple cycles of the bipartite graph B happens to be tractable; see [66] for enumer-
ating all simple cycles in the directed case, and [77, Sec. 3.3] for the undirected case.
These state-of-the-art integer programming solvers usually do not have any difficulty
solving (8) to optimality. Unfortunately, enumerating all simple cycles is typically
intractable in practice.

5. Notes on closely related problems.

5.1. Tearing in chemical engineering. As already stated in Section 3.4, the
minimum feedback edge set problem and tearing are related but not equivalent prob-
lems. In particular, the input of tearing is an undirected bipartite graph, whereas
the input of the minimum feedback edge set problem is a directed graph that is not
necessarily bipartite.

Unfortunately, the term tearing is used in three different ways in the chemical en-
gineering literature: It is sometimes used (1) exclusively for the (weighted) minimum
feedback edge set problem, e.g., [14, 31, 46, 51, 78, 91, 97, 101, 121, 123, 133], and [16,
Ch. 8], (2) for both the minimum feedback edge set problem and for tearing as in our
terminology as defined above, see e.g. [59, 83, 89, 103], and (3) primarily in our sense,
e.g., [19, 26, 52, 58, 79, 108, 110, 111, 129]. This issue seems to be specific to the
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chemical engineering literature: For example, in the electrical engineering literature,
tearing is always used in our sense.

The reason why the (weighted) minimum feedback edge set problem has received
considerable attention in the field of chemical engineering is that it provides means
to find favorable computation sequences in chemical process flowsheet calculations,
see e.g. [5]. In this setup, the edges of the corresponding graph are already directed
and fixed, and not individual equations are solved but small subsystems of equations
(blocks, corresponding to the devices). However, if the direction of the edges is not
considered fixed but can be chosen by the algorithm, the computational sequences
obtained by solving the (weighted) minimum feedback edge set problem can become
suboptimal compared to those obtained with tearing. This was known early on [25,
58, 78].

5.2. Further closely related problems. A feedback vertex set of a simple
connected directed graph G is a set of vertices whose removal makes G acyclic; a
feedback vertex set contains at least one vertex of every cycle in G. The term feed-
back vertex set also appears as essential set in the literature. Finding a feedback
vertex set of minimum cardinality is the minimum (directed) feedback vertex
set problem. The reductions between the minimum feedback edge set problem and
the minimum feedback vertex set problem preserve feasible solutions and their cost;
a good algorithm for one problem usually yields a good algorithm for the other [42].

The linear ordering problem can be defined as follows [85]. Given an n X n
matrix A, determine a simultaneous permutation of its rows and columns such that
the sum of the superdiagonal entries is maximal. This problem is also referred to as
the triangulation problem.

6. Issues with the objective function of tearing. The true goal of tearing is
to minimize the time that is necessary to solve the system of nonlinear equations (1).
Unfortunately, this objective would be too complicated to handle accurately; compro-
mises have to be made. A popular choice in the context of solving nonlinear systems
of equations is to minimize the border width d, see Sec. 2.2. This objective function is
used in the present paper too; here we discuss the issues associated with it. We ignore
the effects of different software and hardware environments on the running time.

The most obvious issue is that minimizing d does not guarantee any savings in
computation time. A convenient assumption is that minimizing d also minimizes the
computation time, which may not be the case in practice.

Another issue is that the computational work saved with a particular ordering
depends on the numerical method used to solve the final system (6), H(z) = 0, see
for example [38, 92, 122, 128] and [16, Sec. 8.4]. Even for a given numerical method
for solving H(z) = 0, and with d fixed, there can be several orderings that realize this
fixed d, yet the computational savings can vary significantly.

A related problem is that H(z) = 0 can be very ill-conditioned, which in turn can
have a negative impact on the convergence properties of the method used for solving
it. This can become so severe that even when f(z) = 0 is well-conditioned, there
may not be any machine representable value for z such that H(z) = 0 is satisfied
with acceptable numerical accuracy, see for example the online supplement of [11].
Another form of ill-conditioning is that after recovering x from z, the original system
f(z) = 0 is not satisfied even though H(z) = 0 holds within the pre-defined threshold.
Although we focus on the nonlinear case, we mention that numerical issues are a major
concern even in the linear case [3, 40, 41, 43].

All these issues are partly due to the fact that the nonlinearities and the actual
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numerical values in (3) and (4) were intentionally ignored as a compromise to make
the algorithm simpler. Although already the first papers on tearing mention that
this compromise has the aforementioned drawbacks, see e.g. [26, 79, 115], the vast
majority of the published tearing algorithms only consider the sparsity pattern of the
Jacobian.

In the context of global optimization, [11, 13] offer means to mitigate all these
issues through a so-called reparameterization. That method works well with extremely
ill-conditioned torn systems even if both the nonlinearities and the actual numerical
values were ignored when computing the permutation matrices in (2). The online
supplement of [11] explains with an example how reparameterization mitigates the
numerical issues of tearing.

7. Variants of tearing allowing small solvable subsystems. Our definition
of tearing covers a common form of tearing, but other variants of tearing exist that may
serve certain practical applications better. Sections 7.1 and 7.2 lay the groundwork for
Sections 7.3 and 7.4: Desirable forms of sparse matrices are introduced in Sections 7.1
and 7.2 that differ from bordered lower triangular. The improvements discussed in
Section 7.3 try to reduce the size of the final system (6) by relaxing the requirements
of (3) (by allowing implicit equations for example) and/or allowing A in (4) to have
a form other than lower triangular. All the enhancements discussed in Sections 7.3
and 7.4 share that the computation of y for a given z only involves fast and numerically
stable algorithms such as solving implicit univariate equations or small systems of
linear equations.

7.1. Dulmage-Mendelsohn decomposition and block triangular forms.
The Dulmage-Mendelsohn decomposition was introduced in a collection of papers [35—
37, 65]; more recent overviews of this decomposition method are available e.g., in [100],
[34, Ch. 6], and [29, Ch. 7]. A computer implementation for performing the Dulmage-
Mendelsohn decomposition is HSL-MC79 from the Harwell Subroutine Library [61].
Only the relevant aspects of the Dulmage-Mendelsohn decomposition are summarized
below; the reader is referred to the above references for further details.

The Dulmage-Mendelsohn decomposition starts with finding a maximum match-
ing (see Fig. 4b). As discussed in Section 3.1, maximum matching corresponds to
a permutation that places a maximum number of nonzero elements on the diagonal
of the matrix. A (possibly rectangular) matrix has structural full rank if and
only if the length of the maximum matching equals the length of the main diagonal.
The matrix is structurally singular otherwise. One can efficiently find the struc-
tural rank of a given matrix with, for example, the MC21 from the Harwell Subroutine
Library [61]; this algorithm is described in [32, 33]. Although the Hopcroft-Karp algo-
rithm [60] has better asymptotic worst-case complexity, numerical evidence suggests
that MC21 tends to outperform it in practice.

Given the input matrix A, the coarse Dulmage-Mendelsohn decomposition
yields a row permutation P and a column permutation () such that

An
(9) PAQ =



h l.ll. ;.
a
H
H N

||
. HE

(a) Input matrix (b) Maximum matching

(c) Coarse DM decomposition (d) Fine DM decomposition

Fic. 4. An ezample illustrating how the Dulmage-Mendelsohn decomposition (DM) works. The
zero-free diagonals of the blocks are marked in gray.

where

All
10
(10) [ " ]

is either absent (has no rows and no columns) or it is rectangular and has more rows
than columns; similarly,

(11) [ Aaz Aga |

is either absent or it is rectangular and has more columns than rows; the blocks Asq,
Aso, and A3 are square with a zero free-diagonal. The matrix (10) corresponds to
the structurally overdetermined, and (11) to the structurally underdetermined part
of the system Ax = b; both matrices are absent if the system Ax = b is structurally
well-defined. An example is shown in Figure 4c.

The coarse Dulmage-Mendelsohn decomposition is unique up to a certain degree.
One can swap rows between A1; and Asp, or columns between Ay3 and Ay, as long
as the matrices As; and Ays still have a zero-free diagonal after the swaps, but apart
from this, the row and column partition is unique. The order of the rows and the
columns within each group of the partition is typically not unique: One can freely
rearrange the rows and the columns within any of the blocks as long as the zero-free
diagonals of the blocks Ay, Azo, and Ay3 are maintained.
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The fine Dulmage-Mendelsohn decomposition yields a row permutation P
and a column permutation @ such that As;, Ase, and Ays have (possibly smaller)
irreducible square blocks on the diagonal, with each block having a zero-free diagonal,
furthermore Ass becomes block lower triangular as well. Irreducible in this context
means that repeating the (coarse and the fine) Dulmage-Mendelsohn decomposition
on these blocks would not decompose them further into smaller blocks.

The fine Dulmage-Mendelsohn decomposition is also unique up to a certain de-
gree. It is sometimes the case that the irreducible blocks on the diagonal can be
interchanged, and similarly to the coarse Dulmage-Mendelsohn decomposition, one
can rearrange the rows and the columns within a block as long as the zero-free diag-
onal of the corresponding blocks is maintained.

The primary application area of tearing is the steady-state simulation of techni-
cal systems. A well-defined steady-state model has a square Jacobian with structural
full rank; by default, any mainstream modeling environment will give an error and
reject the model if this requirement is not satisfied. A special case of the Dulmage-
Mendelsohn decomposition is the so-called block lower triangular decomposition
or BLT decomposition: It outputs a block lower triangular form if the input ma-
trix is square and structurally nonsingular (all submatrices of (9) are absent except
Ass). Let A € R™ ™ denote a square matrix that has structural full rank. The coarse
Dulmage-Mendelsohn decomposition leaves A intact (i.e. only the trivial decomposi-
tion exists), and the fine Dulmage-Mendelsohn decomposition permutes A into block
triangular form where each diagonal block is square with a zero-free diagonal and is
irreducible.

In practice, a common approach to tearing is to perform a BLT decomposition
first; it is also referred to as partitioning and precedence ordering in the chem-
ical engineering literature. Tearing is then applied to the irreducible blocks on the
diagonal. Some tearing heuristics even require BLT decomposition, such as Cellier’s
tearing [24, 116], otherwise the heuristic can fail. However, performing BLT decom-
position first and applying tearing to the individual blocks can lead to suboptimal
results [26, 110]. An example is shown in Figure 5. The matrix on the left of Figure 5

Fic. 5. Left: Performing block lower triangular decomposition first, and then applying tearing
to the two 2 X 2 blocks on the diagonal leads to suboptimal results. The variables that have to be
guessed in each block are marked in gray. Right: The optimal ordering. The only guessed variable
is marked in gray.

is already in block lower triangular form with two 2 x 2 blocks on the diagonal. Ap-
plying tearing to these blocks consecutively results in 1 guessed variable in each block
(marked in gray); the total cost is 2. However, if block lower triangular decomposi-
tion is not performed, and tearing is applied to the original matrix, the optimal cost

10



tearing is 1 (the only guessed variable is marked in gray).

7.2. Desirable forms of sparse matrices. In this section, we discuss the
desirable forms of square and irreducible sparse matrices in terms of the sparsity
pattern. The matrices are assumed to be highly unsymmetric. Highly unsymmetric
in this context means that introducing artificial nonzero entries to make the sparsity
pattern symmetric is not acceptable from the point of view of the application. Such
matrices often arise in engineering applications, and these are probably the primary
area of application for the proposed methods of the present paper.

In a bordered block lower triangular form, that is, in

(12) A= [é g}

the leading submatrix L is a block lower triangular matrix whose diagonal blocks
are square and structurally nonsingular. An example is shown in Figure 6, where
the input matrix (Fig. 6a) corresponds to the steady-state model equations of the
distillation column of [64] (with N = 8 stages). There is a 2 x 2 block on the diagonal
of L; the submatrix D happens to be empty (Fig. 6c¢).

A spiked lower triangular matrix is a nearly lower triangular matrix where
some of the columns have entries above the diagonal; these columns are called spike
columns or simply spikes. The diagonal entry in a non-spike column must be nonzero,
however, a spike column can have a zero entry on the diagonal. Furthermore, for any
pair of spike columns, referred to as left and right spike below, the following property
must hold for the entries on and above the diagonal: The set of rows in the left spike
is either contained in or disjoint from the set of rows of the right spike (see Fig. 6b).
This requirement means that we can form bordered block lower triangular forms on
the diagonal at the spikes where the blocks are either properly nested or disjoint,
see Figure 6b. These diagonal blocks themselves are bordered block lower triangular
forms recursively; therefore the spiked form is also referred to as nested bordered
block triangular form, see [34, Sec. 8.9].

A lower Hessenberg form is a block lower triangular matrix but with fully
dense rectangular blocks on the diagonal, rather than square blocks. Consequently,
the height of the columns is nonincreasing. Since the matrix is irreducible, the first
entry in each column is either on or above the diagonal. An example is shown in
Figure 6d. A lower Hessenberg form can be transformed to a spiked form, and also
to a bordered block lower triangular form with a simple single-pass algorithm [43].

Practical algorithms for permuting to these forms. Several heuristics have been
proposed to permute A to one of the desirable forms discussed in this section, e.g.,
the Hellerman-Rarick family of ordering algorithms, see [40, 55, 56] and [34, Ch. 8],
and the ordering algorithms of Stadtherr and Wood [108, 109]. Efficient computer
implementation of the Hellerman-Rarick family of ordering algorithms is MC33 from
the Harwell Subroutine Library [61]. Although there are subtle differences among
these ordering algorithms, they all fit the same pattern when viewed from a sufficiently
high level of abstraction [43]; they only seem to differ in the lookahead heuristics
applied to break the ties when picking the next row to be eliminated. This abstraction
by Fletcher and Hall [43] is discussed in [9] in great detail.

7.3. Hierarchical tearing. In certain cases, it can be beneficial to allow J to be
a spiked form, and minimize the number of spike columns. When dealing with spiked
forms, the number of spike columns plays the role of d since that determines the size
of the final system (6). (Another way to look at this is to consider the bordered lower
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Fic. 6. Alternative forms for ordered sparse matrices.

triangular form as the special case of the spiked form where all the spikes are situated
at the border.)

Tearing can be applied in a recursive fashion if J is allowed to be spiked lower
triangular with disjoint (i.e. unnested) blocks. In this case, each block on the diagonal
is bordered lower triangular by definition of the spiked form; therefore tearing can be
applied successively to the blocks along the diagonal.

An example is shown in Figure 7. The original system is on the left of the figure;
it is an 8 x 8 system and has two blocks on the diagonal. Since both of these blocks
are bordered lower triangular, we can apply tearing successively to them to get a
sequence of two univariate equations; this is shown on the right of Figure 7. For the
sake of this example we assume that these univariate equations are implicit nonlinear
equations, and can be solved numerically for the variables corresponding originally
to the spike columns. (Note that this is a significant deviation from the definition of
Section 2.1 where we disallowed implicit equations in (3).) Since the resulting 4 x 4
system is bordered lower triangular, we can apply tearing again to get a 2 x 2 final
system. We can pose this final system to a nonlinear system solver as follows: (i)
The two variables on the border are posed to the solver (see on the right of Figure 7);
(ii) we deal with the sequence of the two implicit equations internally; (iii) return the
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FiG. 7. Left: The original 8 X 8 system; tearing will be applied to the marked two 3 X 3 blocks
on the diagonal to get a sequence of two implicit equations. Right: The gray 1 X 1 blocks are the
result. This reduced 4 X 4 system can be posed to a solver as the 2 X 2 system h(z) = 0 by applying
tearing again, and solving the implicit g; for y; (i = 1,2) internally.

residual of the last two equations as the residual of the system.

This approach is known as the stage-by-stage method [80, 117] in the chemical
engineering literature. Distillation columns can greatly benefit from this improvement
of tearing: the size of the final system corresponding to (6) becomes independent of
the problem size, whereas it would grow linearly with the problem size if spikes were
not allowed in J. To the best of our knowledge, the above description is the first
abstract presentation of the stage-by-stage method in terms of the sparsity pattern.

The requirement mentioned earlier, that the blocks must be disjoint, is not neces-
sary, although the presence of nesting makes the recursive application of tearing less
appealing. If the nested blocks are solved from inside out and sequentially, then the
method will resemble the coordinate search method (see [93, Sec. 9.3]) in the coor-
dinate system of the variables corresponding to the spikes, and with a fixed order of
the search directions. This can be quite inefficient in practice. If the nested blocks
are merged by moving the spikes of the inner blocks to the border of the outermost
block to form a single bordered lower triangular block (see Sec. 7.2), then this final
block will potentially have a thick border; nevertheless, the corresponding reduced
system of equations can still be solved with any state-of-the-art trust-region or line
search method [93, Sec. 11.2]. To summarize, a spiked lower triangular form for J is
appealing if the blocks are disjoint and have a very narrow border (preferably width
1). We will later give further examples of hierarchical tearing in other contexts as
well, in Section 10.1 (fill-reducing orderings).

7.4. Identifying linear or other small solvable subsystems. Depending
on the problem structure, it can be advantageous to allow A in (4) to be block lower
triangular but require that the blocks on the diagonal correspond to linear systems
of equations [39]. Such diagonal blocks can be solved efficiently.

Technical systems must obey the conservation laws (mass and heat balances must
hold), and the corresponding equations are intrinsically linear. Sophisticated ordering
rules for forming linear subsystems and small subblocks were proposed in [58, 108,
110]. We note that, when viewed from the solvable subsystems point of view, the
hierarchical tearing of Section 7.3 forms solvable subsystems (namely the blocks)
recursively.



8. Improvements for heuristic-based tearing methods.

8.1. Improved matching. Since an exact algorithm must consider all possi-
ble orientations, improved matchings are interesting mostly in the context of greedy
tearing heuristics. The problems listed in Section 6 (that stem from considering the
sparsity pattern only) can be mitigated by taking into account the ignored information
to some extent. For example in [128], not only the sparsity pattern of the Jacobian is
considered but also the actual numerical values. The algorithm requires an estimate
for the solution vector of (1). Another method is described in [52] that works as
follows. According to some heuristic, a weight is assigned to each variable-equation
pair, reflecting how desirable it is to solve that equation for that variable (match that
variable with that equation). The heuristic can take into account the actual numeri-
cal values and the symbolic form of the equations. Then, either the maximum weight
matching is computed, or the matching that maximizes the minimum desirability
associated with any of the equation-variable matches. (See also MC64 from the the
Harwell Subroutine Library [61].) This matching is used for orienting the bipartite
graph B corresponding to the Jacobian of the system, see Section (3.2). The algo-
rithm may produce suboptimal orderings since the cycles in B are completely ignored
when the matching is computed.

8.2. Exploiting the natural block structure. Most technical systems have
an inherent block structure, corresponding to the devices of the system. This block
structure can be used, for example, to partition the irreducible blocks further, to
pre-order the rows and the columns of the Jacobian, or to get a coarse decompo-
sition. Numerical evidence suggests that the partition obtained from the inherent
block structure is useful for heuristic orderings in several contexts: (1) fill-reducing
orderings [73, 108, 109, 130], c.f. Section 10.1, (2) parallelization of the solution
process of sparse linear systems and DAE systems [1, 20, 113, 124, 126], c.f. Sec-
tion 10.2, (3) ordering for global optimization [11-13]. The necessary information
on the block structure is available inside object-oriented simulators such as Model-
ica [45, 86, 118] for multi-domain modeling of heterogeneous complex technical sys-
tems, and gPROMS [47], ASCEND [98] and EMSO [30] for chemical process modeling,
simulation and optimization.

9. Improved exact algorithms.

9.1. Lazy constraint generation. The reason why solving the integer pro-
gram (8) can become impractical is that the naive implementation requires enumer-
ating all the simple cycles in B. Unfortunately, even sparse graphs can have expo-
nentially many simple cycles [104], and such graphs appear in practice, e.g., cascades
(distillation columns) can realize this many simple cycles. In a more sophisticated
setting, one may try to guess the necessary constraints in (8), and enumerate only the
corresponding simple cycles. The hope is that only polynomially many simple cycles
will be necessary. In the context of tearing, the idea of lazy constraint generation
appears in [89, 90].

The idea of building up an integer program incrementally, by adding constraints
to it in a lazy fashion, is quite old, see for example Dantzig et al. [28] from 1954.
The well-known column generation approach corresponds to this idea but works on
the dual problem. Probably the first published paper applying column generation
is from 1958 by Ford and Fulkerson [44]. Not surprisingly, state-of-the-art integer
programming solvers have high-level API support for implementing such algorithms,
see for example LazyConstraints in Gurobi 6.5.1 [53].
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9.2. Smart enumeration. Smart enumeration algorithms resemble branch and
bound methods, but they do not consider themselves as such. With this type of ex-
act methods all possibilities are enumerated, however, in a smart way. After having
enumerated and evaluated the goodness of an ordering, the so-called exclusion rules
help to exclude certain orderings from the yet to be enumerated orderings, signifi-
cantly reducing the combinations to be examined. Care is taken such that the better
orderings are likely to be enumerated earlier. The basis of the exclusion rule is that
it is not necessary to enumerate and evaluate an ordering if we can prove that that
ordering cannot be strictly better then the currently best known one. Sophisticated
examples of these algorithms are given in [26] and [58].

10. Context dependent alternative objective functions. Several issues
were pointed out in Section 6 concerning the objective function. In this section we
present three other objective functions that are used in other contexts with the intent
of minimizing the running time. However, neither of these other objective functions
actually guarantee minimal running time either.

10.1. Fill-reducing orderings. In the context of direct methods for solving
sparse systems of linear equations (e.g. sparse LU factorization), a common objective
function for tearing is to reduce the fill-in. Under reasonable assumptions, minimizing
this objective is also expected to minimize the running time of the algorithm for
solving the corresponding linear system, c.f. [50]. However this objective also has
issues, just like minimizing the border width had; the truly “best” ordering cannot
be defined precisely [34, p. 127]. For this reason, and because minimizing the fill-in is
NP-complete [102, 132], heuristics are used in practice: Hierarchical tearing (e.g. [81]
but see also Section 7.3), and exploiting the inherent block structure proved to be
successful, c.f. Section 8.2. Some examples of fill-reducing algorithms from the fields
of chemical and electrical engineering are: [73, 108, 109, 111, 112, 119, 130]. This list
is certainly not exhaustive.

An interesting approach in this area is the combination of nested dissection and
minimum degree ordering algorithms [48, 57, 96]. Numerical evidence suggests that
nested dissection performs better on larger problems, while minimum degree ordering
produces less fill-in for smaller ones. Therefore, a hybrid heuristic is proposed, apply-
ing nested dissection first, followed by minimum degree ordering within the obtained
smallest blocks.

Tearing is not a fill-reducing ordering: When breaking ties, tearing can make the
exact opposite decision of what a fill-reducing ordering (e.g. Markowitz rule [84])
would make [43].

10.2. Parallel computations. In the context of parallel computations, the goal
is to decompose the system in such a way that the subproblems can be solved in
any order (in parallel). The corresponding desirable sparsity pattern is the recursive
bordered block diagonal form (RBBD).

The idea of parallel decompositions dates back to the work of Kron [70, 71].
Elaborate decomposition methods have been published and successfully applied to
(chemical and electrical) engineering problems, see for example [1, 4, 20, 27, 62, 113,
124, 126, 127]. The ordering heuristics often exploit the inherent block structure of
the technical system, c.f. Section 8.2, or apply the hierarchical tearing approach,
see Section 7.3. A formula is proposed in [4] to decide whether applying tearing
recursively to a subblock is worthwhile or not.
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10.3. Minimizing the largest subsystem size. Minimizing the largest sub-
system size in the decomposed system appeared already in the first publications on
tearing [115]. This is a computationally challenging task: Even if the size of such
a largest subsystem is bounded by a constant, the problem is still not solvable in
polynomial time (under the hypothesis that W[1] # FPT), see [18]. Nevertheless,
minimizing the size of the largest nonlinear subsystem seems to be very appealing
in the context of global optimization [11-13]; partitioning based on the natural block
structure, c.f. Section 8.2, can help to create an efficient greedy heuristic.

11. Other applications.

Initializing and solving DAE systems. Numerous (primarily chemical and electri-
cal) engineering applications have been referenced in the previous sections in various
contexts. The reason is the following: The problem of solving nonlinear systems of
equations arises in the daily engineering practice, e.g., when consistent initial values
for differential algebraic equation (DAE) systems are sought [95, 120], or when solving
steady-state models of technical systems. A steady-state solution can be used as a
consistent initial set of the DAE system [72].

Often, steady-state initialization failures can only be resolved in very cumbersome
ways [8, 94, 105, 106, 125], involving user-provided good initial values for the variables.
However, [94] reports that tearing proved to be helpful in steady-state initialization
in certain, difficult cases. Tearing usually also helps to speed up the solution process
of DAE systems [23, 24, 38, 39, 87], thanks to either the reduced problem size or
parallelization, or both. Computing multiple stead-states with tearing-based decom-
position was proposed in [11-13].

Design structure matriz. The so-called design structure matrix (DSM) provides
a concise visual representation of a complex systems. DSMs can help to decompose,
manage, and integrate design processes of complex systems [21, 74, 75, 114], or to
explore the structure of complex software designs [82]. Here, partitioning and tearing
provides means to decompose a complex problem into subproblems.

The industrial applications in the 1990’s include aerospace [49, 107], automo-
tive [17], building design [6, 7], manufacturing [76], telecommunications [99] applica-
tions. The recent survey of Browning [22], entitled “Design Structure Matrix Exten-
sions and Innovations: A Survey and New Opportunities” cites 553 papers, covering
the following areas: aerospace, automotive, computer (hardware), construction, elec-
tronics, energy, government agencies, health-care, information systems and technolo-
gies, innovation systems, manufacturing systems, mechanical products/equipment,
military, naval ship design and development, network system control, pharmaceutical,
real estate development, sensor systems (large-scale), service system design, software
development, transportation system organizations.

Economics. Thanks to the typical structure of a macroeconomic model, tearing
can significantly reduce the size of the problem which in turn can result in significant
savings in the computational efforts necessary to solve these models [15, 63].
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